Photochemistry of Bis(diphenylphosphino)ethane Hydride Complexes of Iron

A. MALDOTTI, S. SOSTERO, O. TRAVERSO*

Centro di Studio sulla Fotochimica e Reattività degli Stati Eccitati dei Composti di Coordinazione del C.N.R., Istituto Chimico, Università di Ferrara, 44100 Ferrara, Italy

and J. ŠIMA

Department of Inorganic Chemistry, The Slovak Technical University, Bratislava, ČSSR

Received June 29, 1981

The phoochemistry of transition-metal hydride complexes has recently attracted considerable attention [1] commensurate with their importance in many transition-metal-assisted or -catalyzed organic transformations. Photoinduced elimination of molecular hydrogen seems to be a general reaction for diand poly-hydride complexes of the transition elements [2, 3]. Photochemical reactions of this type may have considerable potential for hydrogen and energy storage and the present study has been undertaken in order to define the mechanism of dehydrogenation more precisely. This paper reports the photochemistry of [Fe(DPPE)₂HCl] and [Fe(DPPE)₂H₂] (DPPE = bis(diphenylphosphino)ethane) complexes. Reductive elimination of HCl and H₂ occurs upon ultraviolet irradiation and the formation of the highly reactive intermediate $[Fe(DPPE)_2]$ is observed.

Experimental

[Fe(DPPE)₂HCl] (1), [Fe(DPPE)₂H₂] (2*a*) and [Fe(DPPE)₂D₂] (2*b*) were prepared according the published procedures [4, 5] and characterized by ³¹P NMR parameters (1: δ A, 81.5 ppm downfield of 85% H₃PO₄); 2*a*: δ A, 103 ppm; δ B, 90.2 ppm; JAB: 19.5 Hz).

All operations with these complexes were carried out under argon atmosphere.

Photolysis experiments were carried out using the standard techniques of this laboratory with the addition of an irradiation cell which allowed the solutions to be changed under controlled atmospheres.

The analysis of the gases above irradiated solutions was performed by gas mass spectrometry or by gas chromatography.

Results

The [Fe(DPPE)₂HCl] (1) complex is thermally resistant to loss of HCl or H₂ under vacuum or Ar atmosphere. Irradiation of a thoroughly degassed toluene solution of 1 with 313 nm results in a rapid color change from red-violet to brown. Accompanying the photoreaction is a decrease in intensity of the ν (Fe-H) at 1925 cm⁻¹, and no new vibrations appear in the ν (Fe-H) region. Mass spectral analysis of the gases above irradiated d⁸-toluene solutions of 1 showed only HCl, with no being HD detected.

Evaporation of the solvent after prolonged (3 hr) photolysis gave a red-brown solid which showed IR and ³¹P NMR spectra characteristic of the *ortho*-metallated derivative [5] [Fe(DPPE)H(C₆H₄PhC₂H₄-PPh₂)] (3).

Photochemical reactions of I in the presence of CO produced [Fe(DPPE)CO] (4), characterized by strong IR bands at 1830 cm⁻¹, 1975 cm⁻¹ [ν (C = O), terminal carbonyl [5]) and by ³¹P NMR spectrum (δ : 96 ppm downfield of 85% H₃PO₄). In the absence of light complex I does not form 4 at room temperature.

The $[Fe(DPPE)_2H_2]$ (2a) and $[Fe(DPPE)_2D_2]$ (2b) complexes are thermally quite stable and show no tendency to lose H₂ and D₂ under vacuum or Ar atmosphere. Photolysis of degassed toluene solutions of 2a and 2b with 313 nm radiation induces a color change from red to brown. Monitoring the photolysis in the IR revealed that the metal-hydride vibrations at 1875, 1825 cm⁻¹ (2a) and at 1335 cm⁻¹ (2b) decreased in intensity during irradiation and no new bands appeared in the ν Fe-H region. Gas chromatographic and mass spectral analysis of gases above the irradiated solutions showed substantial amounts of H_2 (2a) and D_2 (2b). Irradiation of an equimolar mixture of 2a and 2b gave only H₂ and D₂ with no being HD detected by mass spectrometry. The photolysis in the E.S.R. cavity of a degassed toluenemethanol solution of 2a at 290 K containing 5,5'dimethylpirroline-N-oxide(DMPO) as a spin-trap does not produce any hydrogen atom spin-adduct.

Evaporation of the solvent from the irradiated (3 hr) solution of 2a gave the ortho-metallated product $[Fe(DPPE)H(C_6H_4PPh_2)]$ (3). Modification of the reaction course for 2a can be effected by the presence of additional coordinating ligands. The above photoreaction in the presence of CO yielded the carbonyl derivative 4. The most interesting modification was that achieved with acetonitrile as solvent upon irradiation at 280 K. A red solid 5 of high thermal reactivity was obtained. ³¹P NMR (CDCl₃, δ 95 ppm downfield of 85% H₃PO₄) ¹H NMR (CDCl₃, δ 2.51, CH₃) and IR (2235 cm⁻¹, ν CN) defined 4 as the [Fe(DPPE)₂(CH₃CN)] adduct. The increment

^{*}Author to whom correspondence should be addressed.

 $\Delta \nu CN = 72$ over νCN of free nitrile indicates a coordination of the metal to the lone pair of electrons on the nitrogen [6]. When 5 is allowed to warm up to room temperature, the red adduct loses acetonitrile and the ortho-metallated complex 3 is obtained.

Discussion

The steady irradiation experiments show that light induces elimination of HCl and H₂ from the 1 and 2a complexes to generate $[Fe(DPPE)_2]$ (6) as an apparent intermediate. The photogenerated [Fe(DPPE)₂] can be readily trapped by added substrates, and photolysis of 1 and 2a complexes in the presence of CO and CH₃CN led to formation of the corresponding adducts [Fe(DPPE)₂CO] and $[Fe(DPPE)_2(CH_3CN)]$. The primary photoproduct 6 is a highly reactive intermediate which could undergo reactions with added reagents or ortho-metallation if other reagents are not present. Of great importance is the photoelimination reaction mechanism of complexes 1 and 2a. Heterolytic cleavage of the Fe-H bond to generate H⁺ or H⁻ appeared unlikely in the aromatic solvent employed [2]. Mass spectral analysis of gases over irradiated solutions containing equimolar amounts of 2a and 2b gave only H_2 and D₂, with no being HD detected. The absence of HD in gases over irradiated solutions of the mixture indicates a concerted elimination of H₂ since elimination of $H^{-}(D^{-})$ or $H^{+}(D^{+})$ would lead to a detectable amount of HD. Further evidence of a concerted pathway for the photoinduced elimination of H₂ comes from the E.S.R. experiments in the presence of DNBO in which no hydrogen atom spin adduct is observed. This indicates that hydrogen atoms are not produced to any significant extent in the photoprocesses. A concerted elimination of H₂ has been shown to be the mechanism [7] by which photoinduced loss of H_2 occurs also in $[H_2PtAs(t-Bu_3)_2]$.

The intermediate 6 can be trapped by added substrates, and photolysis in the presence of CO and CH₃CN leads to the formation of corresponding adducts 4 and 5 (scheme 1).

Scheme 1

None of the reported reactions occurs thermally, and light is essential to induce HCl and H₂ loss. Systems of this kind appear useful for the production of reactive species in the synthesis of new compounds, and we are at present extending the work in this direction.

Acknowledgement

The award of an Italo-Czechoslovak Cultural Cooperation Agreement Research Fellowship to J. S. is gratefully acknowledged.

References

- 1 G. L. Geoffroy and J. R. Lehman, Adv. Inorg. Chem. Radiochem., 20 (1977).
- 2 G. L. Geoffroy and M. S. Wrighton, 'Organometallic Photochemistry', Ch. 7, Academic Press, New York, 1979.
- 3 S. Sostero, O. Traverso and V. Carassiti, III Symp. Photochem. React. of Coord. Chem., 96 (1980), Kraków, Poland.
- 4 M. Aresta, P. Giannocaro, M. Rossi and A. Sacco, Inorg. Chim. Acta, 5, 115 (1971).
- 5 S. D. Ittel, C. A. Tolman, P. J. Krusic, A. D. English and J. P. Jesson, Inorg. Chem., 12, 3432 (1978).
- 6 R. Walton, *Quart. Rev. Chem. Soc.*, 19, 126 (1965). 7 P. Bergamini, R. A. Michelin, R. Ros, S. Sostero and O. Traverso, Part. 4 in this series, to be submitted.